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ABSTRACT: We report the synthesis of a perylene derivative
(perylene tetracarboxylic di(propyl imidazole), abbreviated as PDI)
that is coordinated with Co(II) ions to form a coordination
polymer [PDI−Co(Cl)2(H2O)2]n (abbreviated as PDI-Co). The
PDI-Co complex combines the photoactivity of the perylene dye
with the electrocatalytic activity of the “Co(II)” center for
photoelectrochemical hydrogen evolution reaction (HER). To
improve charge transfer interactions, the PDI-Co complex is
immobilized on reduced graphene oxide (rGO) via noncovalent
interactions to form the rGO−PDI-Co complex. The composite
shows good performance in multiple cycle testing and the turnover
number (TON vs CoII) of this hybrid material for hydrogen
evolution reaction (754 after 5 h) is considerably higher than
previously reported dye-sensitized cobalt-based catalysts.
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■ INTRODUCTION

The photoelectrochemical (PEC) splitting of water into
hydrogen and oxygen, also known as artificial photosynthesis,
affords a way of storing solar energy as hydrogen fuel.1 A typical
PEC consists of an anode (generally n-type semiconductor)
that absorbs solar energy and converts it into oxidative
potential for extracting electrons from water and these electrons
are then shuffled to the cathode for hydrogen generation via
proton reduction reaction.2 To increase the efficiency of solar
energy conversion, it is desirable to develop a photoactive
material that works in the visible region of solar spectrum.
Perylene derivatives are useful organic chromospheres for light-
driven water splitting systems because of their high molar
absorbitivity, stability, inexpensive synthesis and self-assembly
properties.3 For example, the perylene and cobalxime catalyst of
Wasielewski et al.4 forms a donor−acceptor pair whose
photoinduced electron transfer ability enables it to show
enhanced performance for hydrogen generation.
Compared to molecule-metal “dyads”, metal ions coordina-

tion polymer networks have attracted great interest because of
their intriguing structural diversities and interesting properties
such as photoluminescence,5 magnetism,6 nonlinear optics,7

etc. For instance, Würthner et al.8 reported a photoluminiscent
coordination polymer formed from perylene bisimide and
Zn(II) ions. Due to their multinuclear absorption and

fluorescence properties, they have been investigated for artificial
light harvesting systems and other optoelectronic applications.9

Herein, we report a cobalt ion-bridged perylene coordination
polymer for hydrogen evolution reaction (HER). In general, it
is helpful to have an electron mediator to supply the
photoinduced electron from the photosensitizer to cobalt
catalyst.4 The aromatic scaffold of reduced graphene oxide
(rGO) allows it to act as an efficient electron mediator.2

Porphyrin immobilized on rGO had been demonstrated to be
an efficient catalyst for photosynthetic production of formic
acid from CO2.

10 Several reports, which include Eosin Y/rGO/
Pt,11 graphene−CNT/Fe2O3,

12 BiVO4−rGO,
13 and Cu2O−

rGO/Pt,2 demonstrated the efficiency of rGO as a good
electron mediator to enhance the photoelectrocatalytic hydro-
gen evolution. In this work, we use rGO as the scaffold and
electron transfer mediator for the photocatalytic system in
water splitting and obtained a turnover number (TON) value
that is highly competitive with that of the state-of-the-art
system.
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■ RESULTS AND DISCUSSION
To form a photoactive perylene coordination polymer network,
the core perylene is modified with coordination ligands on
either side of its core structure. Imidazole derivatives have
strong coordinating ability with various metals including
Co(II)19 and Ru(II).20 Motivated thus, a perylene derivative
(perylene tetracarboxylic di(propyl Imidazole) (PDI)) with two
imdazole groups on either side of the core perylene moiety is
synthesized (see the Supporting Information) from perylene-
3,4,9,10-tetracarboxylic dianhydride and a 1-(3-amino propyl)
imidazole.19 When PDI is mixed with CoCl2·6H2O in 1:1 ratio,
two water molecules from CoCl2·6H2O are exchanged with two
imiazole moieties. forming a coordination polymer network
[PDI-Co(H2O)2Cl2]n or PDI-Co (Figure 1).19 The coupling
between PDI and CoCl2·6H2O is facile and produces an

instantaneous color change from orange to pink. To improve
charge-transfer interactions, the PDI-Co is immobilized on
reduced graphene oxide (rGO) via noncovalent interactions to
form rGO−PDI-Co complex.
UV/vis absorption studies were carried out to probe the

photophysical properties and charge transfer interactions of
PDI, PDI-Co, rGO and rGO−PDI-Co complexes. As shown in
Figure 2, there is a strong absorption for PDI at 485 and 525
nm, which is mainly due to the π−π* transitions of the
perylene core.15 When PDI is coordinated to the Co(II) ions,
the peak at 525 nm is red-shifted to 580 nm, indicating a strong
interactive coupling between PDI and Co(II).4 The resultant
580 nm peak is further red-shifted upon π−π stacking on rGO,
suggesting electron transfer from PDI-Co to rGO (charge-
transfer dynamics will be discussed in subsequent sections in

Figure 1. Synthetic route for the coupling of PDI to CoCl2 to form “PDI-Co” polymer. (a) PDI in CHCl3, (b) separation of CoCl2·6H2O solution
on the top of PDI solution (color changed due to diffusion of CoCl2) and (c) after 4 h of heating, formation of “PDI-Co” polymer precipitate (in set
is SEM image of final product).
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Figure 5b).24 In the composite, the absorption peaks due to
PDI-Co overlap with the broad absorption peaks of rGO.10−14

Overall, a red shift of ∼70 nm (Figure 2) renders this rGO−
PDI-Co complex a visible light-responsive material. The
characteristic graphene peak at 263 nm (due to π−π*
transition)22 serves as an evidence for the presence of rGO
in rGO−PDI-Co complex.
Fourier Transform Infrared (FITR) spectroscopic studies

also provide further evidence of the chemical structure from the
fingerprint peaks of the respective components (Supporting
Information, Figure S4). Scanning electron microscopy (SEM)

and electron dispersion X-ray spectroscopy (EDS) analyses of
PDI-Co show the morphology and the special distribution of C,
N, O, Co and Cl elements in the composite. (Supporting
Information, Figures S4 and S5). Thermal gravimetric analysis
(TGA) characterizations were also carried out to understand
the thermal behavior of rGO−PDI-Co (Supporting Informa-
tion, Figure S6).
The electrochemical behavior of PDI, PDI-Co and rGO−

PDI-Co in the dark was investigated. For this, PDI, PDI-Co and
rGO−PDI-Co suspensions in ethanol solution were drop-
casted and allowed to dry on a platinum disk electrode. Cyclic

Figure 2. UV−vis absorption Spectra of PDI and PDI-Co and rGO−PDI-Co suspensions in DMF/ethanol mixture. (a) Comparison between PDI
and PDI-Co and (b) comparison between PDI-Co, rGO and rGO−PDI-Co.

Figure 3. (a) Cyclic voltammogram(CV)s of (i) PDI-Co (ii) rGO:PDI-Co (0.2:1) (iii) rGO:PDI-Co (0.4:1) and (iv) rGO:PDI-Co (0.6:1); all
voltammograms were measured in dry acetonitrile (0.1 M nBu4N+PF6

−) at a scan rate of 10 mV·s−1. (b) Active cobalt mass comparison among
various composites of rGO/PDI-Co and (c) comparative CV plots of PDI, PDI-Co and rGO−PDI-Co.
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voltammograms (CV) were recorded using a standard three-
electrode electrochemical setup at a scan rate of 10 mV/s
(Figure 3c). 0.1 M tetrabutyl ammonium hexafluorophosphate
(TBA) in dry acetonitrile was used as the electrolyte. A strong
reduction peak at −1.28 V (vs ferrocenium/ferrocene Fc+/Fc)
in Figure 3c corresponds to the reduction of PDI.15 Upon
coupling with the cobalt complex, an additional peak centered
at −1.07 V (vs Fc+/Fc) assignable to the Co(II)/Co(I) redox
appears. The reduction potentials of both PDI and Co(II)/
Co(I) are in good agreement with the reported values.24 In the
case of rGO−PDI-Co, the corresponding Co(II)/Co(I) peak is
shifted slightly toward positive potential (From −1.07 to −1.04
V) whereas the position of the PDI reduction peak is shifted
from −1.24 to −1.28 V (vs Fc+/Fc), which is attributed to the
facile electron-transfer mediated by the conductive rGO
scaffold.16−18 (Figure 3c). The current densities of both
peaks are larger for rGO−PDI-Co as compared to individual
rGO and PDI-Co.
As shown in Figure 3, the active cobalt catalyst concentration

in the rGO−PDI-Co sample can be estimated from the
integration of the monoelectronic wave at −1.04 V, which is
calculated to be 7.21 × 10−8 mol·cm−2 from Charge Q = 1/v
∫ VO
Vf I(V)·dV (see the Supporting Information for details). The

concentration of active Co catalyst in the rGO−PDI-Co allows
us to calculate the turnover number, which will be discussed in
later sections. To enhance the synergetic interaction in the
rGO−PDI-Co complex, it is important to optimize the ratio of

rGO and PDI-Co. Optimization of different weight composi-
tions (Figure 3a,b) shows that rGO:PDI-Co with a weight ratio
of 0.4:1 yields the highest active-Co(II) mass of 72.1 nmol/cm2

among the composition we have synthesized. Hence, the
optimal weight percentage of rGO is 40%, beyond which the
performance will decline (Figure 3b).
The photoelectrochemical activity of optimized rGO−PDI-

Co (0.4:1) for HER is examined in N2-saturated 1 M phosphate
buffer solution. For this purpose, the rGO−PDI-Co suspension
is deposited as a thin film on indium tin oxide (ITO). The
linear sweep voltammogram (LSV) is recorded at scan speed of
10 mV s−1 under visible light irradiation (300 W xenon lamp
with a 400 nm cutoff filter as a visible light source.) The onset
potential for HER is observed to shift from −0.24 to −0.14 V
for the rGO−PDI-Co complex under illumination (Figure 4a).
The onset potential is lower than recently reported CNT−
cobalt molecular catalyst24 which is at −0.35 V (Vs RHE). The
photoexcited electrons generated from PDI are captured by
rGO in the composite and transferred to the Co(II) center
where the protons are reduced to generate hydrogen.4

Figure 5a also illustrates electron transfer process in rGO−
PDI-Co according to the band gap level. The conduction band
level of rGO (−4.42 eV)11 is lower than the work function of
singlet state energy of exited PDI, i.e, 2.31 eV (from Guassian
bandgap calculations), thus favoring charge-transfer from PDI
to rGO.11 To investigate the charge transfer within rGO−PDI-

Figure 4. (a) Liner voltammograms (LSV) of rGO−PDI-Co for hydrogen evolution reaction (HER) under visible light illumination (λ > 400 nm) in
1 M phosphate buffer pH 6.8 at scan rate 10 mV s−1 and (b) schematic illustion of rGO−PDI-Co working principle.

Figure 5. (a) Schematic representation of possible electron transfer processes in rGO−PDI-Co complex for photoelectrochemical hydrogen
evolution reaction. (b) Normalized transient absorption of rGO−PDI-Co and PDI-Co solutions monitored at 530 nm with a pulse energy of 20 nJ/
pulse.
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Co complex, we carried out femtosecond pump−probe
experiments.
From Figure 5b, it can be seen that the dynamics of PDI-Co

(dye) are dominated by photoabsorption, which originates
from the larger absorption cross section of exited state
compared to ground state with a relaxation time of 400 ps.
No signal was observed for rGO solution under this
experimental configuration (see the Supporting Information
for experimental details). However, linking PDI-Co to rGO
offers an additional route to dissipate the excess exited state
energy of dye via ultrafast charge transfer with a decay time of
80 ps. From rGO, the electrons are transferred to the Co(II)−
H complex to generate Co(I) and molecular hydrogen as
shown below (eq 1).29−33,35

→ ⎯→⎯ − → − ⎯→⎯ +
− + − +

Co Co Co H Co H Co HII e I H III e II H II
2 (1)

Following, HER is quantified using an online gas chromato-
graphic (GC) TCD detector. The evolution of hydrogen gases
during the photoelectrochemical water splitting reaction is
measured for all samples in 1 M PBS buffer solution at pH 6.8
with an applied bias of −0.4 V vs SHE. Figure 6a shows the
photocatalytic H2 evolution of rGO−PDI-Co under visible light
(λ > 400 nm) irradiation. The amount of H2 evolved from
rGO−PDI-Co after 30 min of irradiation is ∼0.4 mmol g−1,
which is higher than that produced from PDI-Co and rGO
alone (Figure 6a). After 5 h, the amount of hydrogen evolved
from rGO−PDI-Co increases to ∼1.2 mmol g−1, which
translates to a HER evolution rate of 225 μmol g−1 h−1. This
performance surpasses that of previously reported photoactive
Au doped TiO2 (50 μmol g−1 h−1).35 We have also investigated
the reusability of rGO−PDI-Co in multiple testing cycles
(Supporting Information, Figure S7). As shown in the Figure
S7 (Supporting Information), even after the 4th cycle test,
rGO−PDI-Co is functioning well in terms of H2 production
(Supporting Information, Figure S7).29 The decrease in the
amount of hydrogen produced after 3rd cycle can be attributed
to the degradation of PDI-Co under continious irradation (λ >
400 nm) and applied voltage (−0.4 V vs SHE) for >25 h. This
is consistent with the previously reported Eosin Y/rGO/Pt,11

graphene−CNT/Fe2O3,
12 BiVO4−rGO

13 and Cu2O−rGO/Pt
2

Figure 6b depicts the current densities during the photo-
elctrochemical hydrogen generation, which can be converted

into the charge densities during the process (Figure 6c).
Compared to rGO and PDI-Co, the charge density at rGO−
PDI-Co is always higher at any given time. For example, the
charge density of rGO−PDI-Co reaches ∼10.5 C/cm2 by 5 h
compared to ∼4.5 C/cm2 observed for PDI-Co.
Considering that two electrons are required for the formation

of a H2 molecule
27 and using the cobalt concentration of 7.21 ×

10−8 mol·cm−2 estimated from CV studies, we can calculate the
turnover number (TON vs CoII) of rGO−PDI-Co to be ∼754
after 5 h of operation (see the Supproting Information for
details). The TON of rGO−PDI-Co (TON ∼754 vs CoII after
5 h) is higher than that of reported dye-sensitized cobalt
catalysts for HER. For example, the ruthenium-based photo-
sensitizer ([Ru(bpy)3]

2+) coupled with [Co(bpy)3]
2,36 shows a

TON of ∼52 and the [Ir(ppy)2−(bpy)]+/ [Co(bpy)3]
2+37

system shows a TON of ∼42 (vs CoII).37 Recently, it is
highlighted that xanthene dye-coupled [Co(dmgBF2)2(H2O)2]
can give a TON of 212 vs Co(II). The enhanced performance of
rGO−PDI-Co37 composite can be attributed to the higher
photostability of perylene dye and the conductive nature of
rGO that helps to transfer electrons from the photoexcited PDI
to Co(II) in the reduction of H+ to H2.

36,37

■ CONCLUSIONS

A perylene−cobalt coordination polymer (PDI-Co(II)) was
successfully synthesized and coupled to reduced graphene oxide
(rGO) via noncovalent interactions to form a catalytically active
composite for HER. A strong red shift of 70 nm in absorption
peak of PDI provides the evidence for strong charge transfer
interactions between rGO and PDI-Co. Synergistic interaction
between rGO and PDI-Co(II) polymer promotes charge-
transfer and photocatalysis and enhances the hydrogen yield of
the photoelectrochemical water spitting reaction significantly
compared to control samples. The TON (vs CoII) of rGO−
PDI-Co reaches 754 after 5 h of photocatalyzed water splitting
and the composite shows good reusability properties. This
work demonstrates that interfacing coordination polymer with
rGO can generate a highly effective photoelectrochemical
platform, which may be potentially applied in wide ranging
catalysis reactions.10

Figure 6. (a) Amount of H2 evolved from rGO−PDI-Co, rGO PDI-Co and samples illuminated under visible light and at an applied potential of
−0.4 V (vs RHE) (5% Triethylamine (TEA) is used as hole scavenger), (b) evolution of the current densities during the photoelectrochemical
hydrogen evolution and (c) charge passed during the same experiments.
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